M.Sc. Frank Bieder
- Research Associate at FZI
- Phone: +49 721 608-48423
- bieder ∂fzi de
- www.fzi.de/team/frank-bieder/
FZI Forschungszentrum Informatik
Haid-und-Neu-Str. 10–14
76131 Karlsruhe, Germany
Research
My research interest lies at the intersection of computer vision and machine learning in the context of mobile perception systems. Currently, I am working on deep learning methods for 3D scene understanding to enable map-less driving or self-localization in sparse planning maps. In particular, I am interested in exploring how to overcome data shortage by leveraging the 6D pose awareness of mobile systems in highly accurate semantic 3D maps . Exampels of my current research are:
- Map Learning: Automatic data generation for deep learning applications using HD maps and multi-drive mapping
- Leveraging Map Learning for self-localisation, semantic mapping and map-less driving
- Learning-based 3D scene understanding
Teaching
- Übungsleiter der Vorlesung Messtechnik II (SS20, WS20/21, SS21, WS21/22, SS22, WS22/23)
- Aufgabensteller Grundlagen der Mess- und Regelungstechnik (SS19, WS19/20, SS20, SS21, WS21/22, WS22/23)
- Mechatronik-Praktikum (WS19/20)
- Rechnergestützte Verfahren in der Mess- und Regelungstechnik (WS19/20, WS20/21, WS21/22)
Academic Services
- Reviewer for
- IEEE ITS Intelligent Vehicles Symposium (IV)
- IEEE ITS Intelligent Transportation Systems Magazine (ITS-M)
- IEEE RAS International Conference for Robotics and Automatisation (ICRA)
- IEEE RSJ International Conference on Intelligent Robots and Systems (IROS)
- IEEE RAS Robotics and Automation Letters (RA-L)
- Springer International Journal of Computer Vision (VISI)
- De Gruyter TM-Technisches Messen (TM)
- Chair of workshop on Bridging the gap between map-based and map-less driving in the context of automated driving at Intelligent Vehicles Symposium (IV) 2022 in Aachen, Germany, and 2023 in Anchorage, USA.
- Associate editor at Intelligent Vehicles Symposium (IV) 2022 in Anchorage, USA
- Chair of special session on Real-time critical perception tasks in the context of automated driving at FUSION 2021 in Sun City, South Africa, and FUSION 2022 in Linköping, Sweden
Open Theses
Completed Theses
- Recursive fusion of sequential LiDAR measurements considering dynamic occlusions for the creation of grid maps in the context of autonomous driving, master thesis March 2022
- Automated Data Generation with HD-Maps for Machine Learning in the Context of Automated Driving, master thesis, April 2021
- Occlusion Handling for Automatic Data Generation using HD Maps and a highly accurate SLAM, master thesis, November 2020
- Fusion of Simultaneously Learned Semantic Information from Different Representations, master thesis, November 2020
- A Comparison of Different Approaches to Solve the SLAM Problem on a Formula Student Driverless Race Car, master thesis, November 2020
- Combining Sequential LiDAR Measurements For Semantic Segmentation of Multi-Layer Grid Maps, master thesis, November 2020
- Panoptic Segmentation of Urban Scenarios, master thesis, September 2020
Publications
-
A Dual Evidential Top-View Representation to Model the Semantic Environment of Automated Vehicles
Richter, S.; Bieder, F.; Wirges, S.; Stiller, C.
2024. IEEE Transactions on Intelligent Vehicles, 9 (1), 2688–2700. doi:10.1109/TIV.2023.3284400 -
Ein Ansatz zur automatisierten Erstellung von Trainingsdaten unter Verwendung von HD-Karten und Mehrfachbefahrungen
Bieder, F.; Hu, H.; Schantz, J.; Kirik, O.; Ries, F.; Haueis, M.; Stiller, C.
2023. Uni-DAS 15. Workshop Fahrerassistenz und automatisiertes Fahren, FAS 2023, 24. – 26.10.2023 Kloster Bonlanden, Berkheim. Hrsg.: K. Bengler, 17–26, Uni-DAS -
Large-Scale 3D Semantic Reconstruction for Automated Driving Vehicles with Adaptive Truncated Signed Distance Function
Hu, H.; Yang, H.; Wu, J.; Lei, X.; Bieder, F.; Pauls, J.-H.; Stiller, C.
2023. Proc. IEEE Intelligent Vehicles Symposium (IV). Ed.: IEEE, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/IV55152.2023.10186691 -
Sensor Data Fusion in Top-View Grid Maps using Evidential Reasoning with Advanced Conflict Resolution
Richter, S.; Bieder, F.; Wirges, S.; Kinzig, C.; Stiller, C.
2022. 25th International Conference on Information Fusion (FUSION), Linköping, Sweden, 04-07 July 2022, Linköping, Sweden, 04-07 July 2022, Institute of Electrical and Electronics Engineers (IEEE). doi:10.23919/FUSION49751.2022.9841241 -
TEScalib: Targetless Extrinsic Self-Calibration of LiDAR and Stereo Camera for Automated Driving Vehicles with Uncertainty Analysis
Hu, H.; Han, F.; Bieder, F.; Pauls, J.-H.; Stiller, C.
2022. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 6256–6263, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/IROS47612.2022.9981651 -
Interaction-Aware Game-Theoretic Motion Planning for Automated Vehicles using Bi-level Optimization
Burger, C.; Fischer, J.; Bieder, F.; Tas, O. S.; Stiller, C.
2022. 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), 3978–3985, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ITSC55140.2022.9922600 -
MASS: Multi-Attentional Semantic Segmentation of LiDAR Data for Dense Top-View Understanding
Peng, K.; Fei, J.; Yang, K.; Roitberg, A.; Zhang, J.; Bieder, F.; Heidenreich, P.; Stiller, C.; Stiefelhagen, R.
2022. IEEE transactions on intelligent transportation systems, 23 (9), 15824–15840. doi:10.1109/TITS.2022.3145588 -
Improving Lidar-Based Semantic Segmentation of Top-View Grid Maps by Learning Features in Complementary Representations
Bieder, F.; Link, M.; Romanski, S.; Hu, H.; Stiller, C.
2021. Proceedings of 2021 24th International Conference on Information Fusion (FUSION), 64–70, Institute of Electrical and Electronics Engineers (IEEE). doi:10.23919/FUSION49465.2021.9627069 -
Fast and Robust Ground Surface Estimation from LiDAR Measurements using Uniform B-Splines
Wirges, S.; Rösch, K.; Bieder, F.; Stiller, C.
2021. 2021 IEEE 24th International Conference on Information Fusion (FUSION). Hrsg.: IEEE, Institute of Electrical and Electronics Engineers (IEEE) -
Fusion of Simultaneously Learned Features from Complementary Representations for Semantic Segmentation of Top-View Grid Maps
Bieder, F.; Link, M.; Romanski, S.; Hu, H.; Stiller, C.
2021. Proc. International Conference on Information Fusion (FUSION), IEEEXplore -
PillarSegNet: Pillar-based Semantic Grid Map Estimation using Sparse LiDAR Data
Fei, J.; Peng, K.; Heidenreich, P.; Bieder, F.; Stiller, C.
2021. IEEE Intelligent Vehicles Symposium (IV): 11-17 July 2021, online, 838–844, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/IV48863.2021.9575694 -
Fusion of sequential LiDAR measurements for semantic segmentation of multi-layer grid maps
Bieder, F.; Wirges, S.; Richter, S.; Stiller, C.
2021. Technisches Messen, 88 (6), 352–360. doi:10.1515/teme-2021-0026 -
Fusion of Sequential Information for Semantic Grid Map Estimation
Bieder, F.; Rehman, M. U.; Stiller, C.
2020. Forum Bildverarbeitung 2020. Ed.: T. Längle ; M. Heizmann, 79–89, KIT Scientific Publishing -
Exploiting Multi-Layer Grid Maps for Surround-View Semantic Segmentation of Sparse LiDAR Data
Bieder, F.; Wirges, S.; Janosovits, J.; Richter, S.; Wang, Z.; Stiller, C.
2020. 2020 IEEE Intelligent Vehicles Symposium (IV), 19 October - 13 November 2020, online, 1892–1898, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/IV47402.2020.9304848